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Abstract
Marsh birds are highly elusive and select wetland habitats 
that are difficult to navigate and easily damaged by human 
observers. Autonomous recording units (ARUs) have been 
used to determine presence or absence of marsh bird species; 
however, distance effects on observer ability to detect a call 
or song vary based on study location, species of interest, and 
ARU product. Therefore, our objectives were to (1) evaluate if 
ARUs can be used to accurately count three marsh bird species 
(e.g., Clapper Rail Rallus crepitans, Least Bittern Ixobrychus 
exilis, Seaside Sparrow Ammospiza maritima), (2) evaluate 
how ability to detect a call or song changes over distance from 
the ARU, and (3) determine the straight-line distance surveyed 
by the ARU for the three species. We arranged ARUs to record 
calls from our marsh bird species broadcasted from Bluetooth 
speakers at fixed distances. We replicated possible calling 
scenarios by playing calls in different number combinations of 
individuals, ranging from 1 to 10 birds. To reduce interference 
from real bird vocalizations, we conducted our experiment in a 
recently burned pine savanna habitat that had similar herbaceous 
vegetation structure to the coastal emergent wetland habitats 
preferred by these species in southern Mississippi. We used 
Raven Pro bioacoustics software to produce sonogram images 
of the broadcasted calls in order to count individuals for each 
recording. We modeled ability to detect the call or song for each 
species at different distances from the ARU. Results showed that 
ARUs may be useful for counting individuals at close distances 
for some species (<100 m), but most counts were biased low. 
In Clapper Rails and Least Bitterns, count accuracy decreased 
between 100 and 125 m from the ARU, and count accuracy 
decreased 50–100 m for Seaside Sparrows. There was also a 
significant decline in count accuracy with increasing chorus size 
(Beta = −0.01, SE = 0.005). With further study and advancing 
technology, ARUs may be able to supplement marsh bird surveys 
and limit logistical issues.
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Introduction
Marsh birds (rails, gallinules, bitterns, and some passerines) 
inhabit dense wetlands, infrequently vocalize, and are oth-
erwise elusive and difficult to detect in the field. Traditional 
methods of surveying marsh birds, such as call-broadcast 
surveys to increase detection rates, require large investments 
of personnel time and can be logistically challenging to under-
take (Conway 2011). Due to the challenges of gathering long-
term spatial and temporal monitoring data on secretive marsh 
birds, there is a lack of sufficient count data for many species 
(Lehnert 2019; Lévêque et al. 2021). Marsh habitats can be 
logistically challenging to access, require resource-intensive 
survey methods, and can also be very fragile. Hence, repeat-
ed visits needed for call-broadcast can harm marsh habitat. If 
these challenges can be overcome, marsh bird species could 
be monitored effectively across large spatial scales, providing 
important information for understanding management impacts 
on marsh birds, as well as their population status and trends. 

Autonomous recording units (ARUs) could complement cur-
rent marsh bird survey techniques to study population trends. 
ARUs can be deployed for weeks to months at a time and 
record at specific times of day or continuously depending on 
their programming. ARUs have proven useful for avian stud-
ies, as many species can be detected by vocalization across 
diverse habitats (Haselmayer and Quinn 2000; Nadeau et al. 
2008). Once deployed, ARUs can record data in remote areas, 
such as wetland habitats, causing little disturbance across 
prolonged time periods. ARUs have been successfully used to 
detect species and identify populations in previously unrecord-
ed areas (Thompson et al. 2017; Pérez-Granados et al. 2018).

ARUs can produce similar results in rates of species detection 
compared to point count surveys in some situations (Venier et 
al. 2012) but not in others (Hutto and Stutzman 2009). Com-
bining ARUs with point count surveys can provide better data 
than when either is used alone (Holmes et al. 2014; Alquezar 
and Machado 2015). Combining ARUS with point count sur-
veys can also alleviate limitations of in-person counts, such 
as the need for adequately trained personnel and extensive 
travel time between points (Tegeler et al. 2012; Venier et al. 
2012; Alquezar and Machado 2015; Sidie-Slettedahl et al. 
2015; Perez-Granados et al. 2018). For marsh birds, which 
seldom call other than during crepuscular or nocturnal periods 
and are hard to detect when calling, ARUs can be a valuable 
tool for increasing detections. Frommolt and Tauchert (2013) 
used ARUs to determine the presence of Eurasian Bitterns 
(Botaurus stellaris) and detect separate individuals by their 
calls in a newly restored wetland area. Individual Yellow Rails 
(Coturnicops noveboracensis) were also counted from ARU 
recordings and sonograms (Drake et al. 2016). 

Challenges of interpreting ARU data include positively identi-
fying species calls by observers listening to recordings, and/
or through computational methods. Additionally, it is difficult to 
determine how long an ARU can detect a call or song from 
a straight-line distance. For Yellow Rails, the most effective 
broadcasting radius for ARUs was 150–175 m (Drake et al. 

2017). A similar study assessing ARUs and forest birds es-
timated a broadcasting radius of 50 m (Furnas and Callas 
2015). These studies highlight the necessity of examining 
the distance an ARU can detect each species in concert with 
surrounding habitat type, as both call/song type and vegeta-
tion structure will impact the distance of detection and thus 
the inference of species occupancy/abundance determined by 
each ARU. 

Recently, there has been an increase in the number of studies 
using ARUs for surveying marsh birds. Results have varied 
by species; detection probability of Black Rails (Laterallus 
jamaicensis) increased when counts from ARUs were used 
in conjunction with in-person point counts with no adverse 
effects on rail presences (Bobay et al. 2018). Manual listening 
of ARU recordings was found to be reliable for detecting King 
Rails (Rallus elegans) and Clapper Rails (Rallus crepitans), 
but error rates increased when using automated recognition 
software (Stiffler et al. 2018). As the ability of automated rec-
ognition software to detect species in a variety of conditions 
and to deal with sources of electromagnetic noises improves, 
computational methods may become more efficient at recog-
nizing specific species (Schroeder and McRae 2020). Machine 
learning algorithms have been used to analyze ARU record-
ings, such as those used by Znidersic et al. (2020) to identify 
Least Bitterns (Ixobrychus exilis). Pairing ARUs with point 
count surveys could work best for improving detection rates 
and associated detection probability of secretive marsh birds

For this study, we focused on three common salt marsh spe-
cies found in coastal Mississippi, USA, the Clapper Rail, Least 
Bittern, and Seaside Sparrow (Ammospiza maritima). Our ob-
jectives were to (1) evaluate if ARUs can be used to accurately 
count our focal marsh bird species, (2) evaluate how ability to 
detect a call or song changes over distance from the ARU, and 
(3) determine the straight-line distance surveyed by the ARU 
for each species.

Methods
Recordings

Our study area was located at Grand Bay National Estuarine 
Research Reserve in Moss Point, Mississippi, USA (30.431152, 
−88.426941). We chose a recently burned wet pine savanna 
composed of horizontal and vertical vegetation structure and 
density similar to Mississippi tidal salt marshes. These pine 
savannas included infrequent trees and were often dominated 
by waist-high annual grasses, with some smaller woody veg-
etation mixed among them. While plant species differed from 
tidal marsh species, the pine savanna was structurally similar 
to tidal marsh. Both habitat types rarely have trees and are 
often dominated by non-woody vegetation of a similar height, 
with occasional smaller woody plants interspersed between 
herbaceous species. In addition to habitat similarity, we chose 
to conduct our study in a pine savanna upland from adjacent 
marsh in order to remove any chance of accidentally detecting 
our focal species. Additionally, conducting our experiment in 
pine savanna avoided disturbing marsh birds during their nest-
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ing season with broadcasted calls. We conducted all trials on 
a single sunny summer afternoon with light winds (≤20 km/h), 
high summer humidity (>70%), and temperatures in the high 
20s C. We chose to test the ability of ARUs to detect three focal 
species of marsh birds that are common in the area. Clapper 
Rails and Seaside Sparrows were year-round residents and 
known to vocalize year-round. Least Bitterns were primarily 
present in winter.

We downloaded single calls for all three species from the 
Xeno-canto database of bird songs (https://xeno-canto.org/). 
Unfortunately, we did not record which specific calls we down-
loaded so we are unable to cite those recordings. The audio 
editing program Audacity was used to combine and mix dif-

ferent vocalizations of the same species into different chorus 
sizes (Audacity Team 2019). These were done in combinations 
of 1, 2, 3, 5, or 10 individual birds calling intermittently. The 
larger choruses were created from combinations of the same 
recording multiple times and different recordings combined 
together. Each completed audio file was one minute long. 
We used one Bluetooth speaker to act as our artificial bird 
and played recordings from set interval distances (25, 50, 
75, 100, and 150 m) from our ARUs (Figure 1). The speaker 
had a broadcast rate of 100 dB at 1 m. We set Song Meter 
SM4 (Wildlife Acoustics, Inc., Maynard, Massachusetts, USA) 
autonomous recording units to continuously record each 
broadcasted chorus. We used a total of five ARUs, placed 10 

FIGURE 1  Diagram of automated recording unit (ARU) and speaker setup for trials.

FIGURE 2  Ratio of counted individuals versus real individuals. Points above the horizontal line are overcounts, points 
below the horizontal line are undercounts..
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m apart in a vertical line. At each distance, we played each 
combination of individual birds for one minute. This resulted in 
25 trials for each possible chorus size, leading to a total of 375 
trials for all three target species. Individual trials were assigned 
a random number, which was read aloud near the ARU prior to 
the trial, so that recordings could be identified independent of 
their true number of individuals. All trials were completed in the 
same afternoon in the same weather conditions.

Sonograms

We manually split ARU recordings among individual trials. 
Each trial’s file was loaded into Cornell’s Raven: Interactive 
Sound Analysis Software (Bioacoustics Research Program 
2014), and the sonogram image and sound were analyzed by 
one observer who was familiar with the focal species calls but 
had no prior knowledge of the actual chorus size or distances 
of each file because of each file’s random number identifier. 
The observer estimated the number of individuals of each spe-
cies on the recording using the audio recording and sonogram 
image.

Counting accuracy

We graphically examined count bias over distance by calculat-
ing the ratio of estimated birds versus true number of birds in 
each recording (a ratio of 1 = unbiased estimate, a ratio <1 = 
underbiased, a ratio >1 = overbiased) at each distance away 
from the ARU. We tested for a difference in estimate bias with 
chorus size using a linear model with a binary response vari-
able (correct or not) and a continuous predictor (real chorus 
size).

Detection of calls and songs

We examined changes in ability to detect songs and calls 
over distance from the ARU separately for each species. We 
counted a species as detected in a recording when at least 
one individual could be clearly heard, or its call seen on the 

sonogram, regardless of chorus size. A trial received a score of 
“no detection” when there was outside noise interference or no 
individuals could clearly be detected. We evaluated changes 
in ability to detect calls and songs among distances from the 
ARUs using a logistic regression with linear, quadratic, and 
cubic functions on the impact of distance on detection. We 
compared the linear, quadratic, and cubic models for each 
species using AIC (Burnham and Anderson 2002). We consid-
ered all models with delta AIC < 2 as probable, and among the 
probable models chose the simplest one (linear chosen over 
quadratic, chosen over cubic). We used R v.4.0.5 to perform 
our statistical analysis (R Core Team 2021).

Results
Counting accuracy

For each species, most counts were incorrect (Clapper Rail 
107 of 125, Least Bittern 108 of 125, Seaside Sparrow 111 of 
125; Figure 2), with most incorrect counts being undercounts 
(i.e., counting fewer individuals then were broadcast; Figure 
2). For Clapper Rail and Least Bittern, count accuracy sudden-
ly decreased between 100 and 125 m from the ARU, but ability 
to detect Seaside Sparrow calls and songs decreased closer 
to the ARU (between 50 and 100 m; Figure 2). Count accuracy 
also decreased with increasing chorus size (Beta = −0.01, SE 
= 0.005, P = 0.011).

Detection of calls and songs

A decrease in ability to detect calls and songs as distance 
increased between the ARU and speaker was best described 
by a linear model for Clapper Rail and Seaside Sparrow and a 
cubic model for Least Bittern (Table 1, Figure 3). For Clapper 
Rail, ability to detect calls and songs decreased from 0.42 (SE 
0.06) at 25 m to 0.18 (SE 0.02) at 75 m. Least Bittern detection 
probability decreased from 0.32 (SE 0.04) at 75 m to 0.23 (SE 

Species Model AIC Delta AIC

Clapper Rail Cubic 281.1 0

Clapper Rail Quadratic 283.2 2.1

Clapper Rail Linear 286.8 5.7

Least Bittern Cubic 309.7 0

Least Bittern Quadratic 312.5 2.8

Leat Bittern Linear 324.4 14.7

Seaside Sparrow Linear 200.2 0

Seaside Sparrow Quadratic 201.3 1.1

Seaside Sparrow Cubic 202.4 2.2

TABLE 1  AIC tables for species-specific models of detection over distance from the ARU (automated recording unit).
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0.04) at 100 m. Ability to detect Seaside Sparrow calls and 
songs decreased from 0.38 (SE 0.07) at 25 m to 0.21 (SE 
0.03) at 50 m.

Discussion
Our results showed that using ARUs to determine our ability 
to detect calls and songs can lead to variable results among 

call distances from the ARU and bird chorus sizes. However, 
ARUs still have potential to standardize marsh bird sampling 
with respect to presence/absence data. Effective sampling 
radii remain questionable and can vary by species. Hence, 
more research on effective sampling radii among species and 
surrounding ARUs is merited. For example, to avoid scenarios 
where our ability to detect calls and songs is below 20%, spe-
cies-specific distance cutoffs of 50 m for Seaside Sparrows, 
75 m for Clapper Rails, and 100 m for Least Bitterns should 
be considered based on this study (Figure 3). However, all 
sound recordings were based on straight-line distances from 
the omnidirectional microphone. Alternative sound angles may 
cause deviations in song detection and impact effective sam-
pling distances. 

Audio recordings have the benefit of being stored and played 
repeatedly. Unlike point count surveys, second opinions on a 
species identification can be gathered from other listeners and 
the observer effect more accurately quantified. In contrast, 
double observer methods still rely on each observer’s ability to 
detect and identify calls in real time. Using multiple observers 
and observation methods can increase accurate detection of 
calls and decrease bias (Drake et al. 2016). Drake et al. (2016) 
used multiple observers and sampling methods to obtain Yel-
low Rail counts from sonograms and found that the average 
counts from observers were correct 83% of the time when 
detecting chorus sizes of 1–6 birds. Counting errors increased 
as the chorus sized increased, similar to our results. Due to 
project constraints, we had a single observer identifying indi-
vidual birds. However, future research could expand upon our 
process by adding multiple observers to account for variation 
in counting accuracies and observer biases. 

Data collected solely from ARUs will not be sufficient for an-
swering all questions regarding marsh bird occupancy and 
abundances. However, ARU data can supplement other sur-
vey techniques. In addition to providing a digital, archivable 
recording for comparison among observers, point count sound 
files can be accessed many years after recording to assess 
long-term monitoring trends. Furthermore, recordings can 
be used to improve deep learning algorithms for automating 
and standardizing point count assessments similar to com-
puter vision approaches for camera trapping or aerial image 
repositories (see Christin et al. 2019 for an overview) and for 
bioacoustic bird species classification (Salamon et al. 2017). 
Recordings may also contain information about other environ-
mental processes, such as calls from bats, frogs, and insects, 
which could be of value to future studies and provide baseline 
information for unanticipated questions. Recorded traffic noise 
can be used as an index of site development as well. Further-
more, a long-term, historical audio data set based on repeated 
visits would provide valuable insights about temporal site 
changes including occupancy shifts among species of interest. 

For the purpose of this study, we were unable to look at out-
side factors that could affect the reliability of audio recordings. 
Wind was present in all recordings, and in some cases the 
noise interference made it impossible to hear or see any 
vocalizations on the sonogram images. We suggest that fu-

FIGURE 3  Predicted detection probabilities and their 95% 
confidence intervals from the best model for each species 

over distance from ARU (automated recording unit).
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ture studies should look more into the effects of various wind 
speeds on ARU detection. Other natural and artificial made 
sounds, such as nontarget bird species and distant automo-
biles, also appeared on the sonogram images. In some cases, 
these outside noises were significantly louder than the marsh 
bird vocalizations and impeded their detection on the sono-
grams, making it impossible to count individual birds. During 
unfavorable conditions, sampling efforts may be removed from 
the dataset, similar to researchers not conducting point count 
surveys during high wind or excessive noise (Robbins et al. 
1986; Ralph et al. 1995). 

Some other potential concerns about using ARUs are the costs 
of the recording equipment, the possibility of device failure, 
and the processing time of audio data (Alquezar and Machado 
2015; Colbert et al. 2015). Turgeon et al. (2017) assessed the 
variability in ARU microphones and the effects of microphone 
degradation over time and recommended that microphones 
should be tested and replaced when sensitivity loss was ap-
parent. Audio recognition software has been developed for 
some species, but studies have found that automated meth-
ods can be inaccurate when compared to field identification of 
vocalizations by experienced observers (Hutto and Stutzman 
2009). Device failure in the field should also be considered 
when assessing trade-offs among methods. While the use of 
ARUs can reduce the amount of field personnel hours, there is 
still considerable personnel time needed to review and process 
the audio files by hand, making the development of accurate 
automated methods to process audio files vital to using ARUs 
at large scales.

Recently, there has been an increase in the availability of au-
tomatic recognition programs for various bird species. Many 
have been programmed to detect only a specific species of 
interest, such as the Black Rail or Least Bittern (Bobay et al. 
2018; Znidersic et al. 2020). These programs have become 
necessary for the massive amounts of data produced by ARUs 
and associated time investment for observers to manually 
sort through and evaluate recording data (Venier et al. 2012). 
A study compared the differences between human listeners 
and machines when detecting nocturnal forest birds in New 
Zealand and found similar listening ability but higher detec-
tion probability for automatic machine detectors (Castro et al. 
2018). In contrast, Bobay et al. (2018) found that most detec-
tions from automatic machine recorders were false positives 
when targeting secretive marsh bird species. However, these 
recognition devices have recently been used successfully for 
detecting Least Bitterns (Znidersic et al. 2020). With the rise 
of new technology and improvements being made to existing 
automatic recognition software, using ARUs with automatic 
recognition programs could be used to supplement traditional 
point count and playback survey methods for surveying secre-
tive marsh birds and increase their overall detection probability. 

Our project adds to a growing body of literature on the utility 
and interpretation of automated recording units for the study 
of secretive marsh birds. We have shown that effective sur-
vey distances vary by species and that accurately counting 
individuals can be quite challenging in large chorus situations. 

With the increasing use of audio recognition software and 
ever-improving technology, automated recording units could 
be a useful tool for management of secretive marsh birds. 
Secretive marsh birds present a wide variety of monitoring and 
management challenges. Careful combination and analysis of 
automated recordings alongside point count and playback sur-
veys can meet these challenges and help contribute to marsh 
bird conservation.
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Species Distance Beta SE

Clapper Rail 25 0.42 0.06

Clapper Rail 50 0.28 0.03

Clapper Rail 75 0.18 0.02

Clapper Rail 100 0.11 0.01

Clapper Rail 125 0.06 0.01

Clapper Rail 150 0.03 0.01

Clapper Rail 175 0.02 0.01

Clapper Rail 190 0.01 0.008

Least Bittern 25 0.37 0.11

Least Bittern 50 0.28 0.04

Least Bittern 75 0.32 0.04

Least Bittern 100 0.23 0.04

Least Bittern 125 0.02 0.02

Least Bittern 150 0.0001 0.0003

Least Bittern 175 <0.0001 <0.001

Least Bittern 190 <0.0011 <0.001

Seaside Sparrow 25 0.38 0.07

Seaside Sparrow 50 0.21 0.03

Seaside Sparrow 75 0.10 0.01

Seaside Sparrow 100 0.04 0.01

Seaside Sparrow 125 0.02 0.009

Seaside Sparrow 150 0.009 0.005

Seaside Sparrow 175 0.004 0.003

Seaside Sparrow 190 0.002 0.002

SUPPLEMENTAL TABLE 1  Predicted detection probabilities for species and distance from the automated recording unit.


